Comparisons of pollen coat genes across Brassicaceae species reveal rapid evolution by repeat expansion and diversification.
نویسندگان
چکیده
Reproductive genes and traits evolve rapidly in many organisms, including mollusks, algae, and primates. Previously we demonstrated that a family of glycine-rich pollen surface proteins (GRPs) from Arabidopsis thaliana and Brassica oleracea had diverged substantially, making identification of homologous genes impossible despite a separation of only 20 million years. Here we address the molecular genetic mechanisms behind these changes, sequencing the eight members of the GRP cluster, along with 11 neighboring genes in four related species, Arabidopsis arenosa, Olimarabidopsis pumila, Capsella rubella, and Sisymbrium irio. We found that GRP genes change more rapidly than their neighbors; they are more repetitive and have undergone substantially more insertion/deletion events while preserving repeat amino acid composition. Genes flanking the GRP cluster had an average K(a)/K(s) approximately 0.2, indicating strong purifying selection. This ratio rose to approximately 0.5 in the first GRP exon, indicating relaxed selective constraints. The repetitive nature of the second GRP exon makes alignment difficult; even so, K(a)/K(s) within the Arabidopsis genus demonstrated an increase that correlated with exon length. We conclude that rapid GRP evolution is primarily due to duplication, deletion, and divergence of repetitive sequences. GRPs may mediate pollen recognition and hydration by female cells, and divergence of these genes could correlate with or even promote speciation. We tested cross-species interactions, showing that the ability of A. arenosa stigmas to hydrate pollen correlated with GRP divergence and identifying A. arenosa as a model for future studies of pollen recognition.
منابع مشابه
P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملTandem oleosin genes in a cluster acquired in Brassicaceae created tapetosomes and conferred additive benefit of pollen vigor.
During evolution, genomes expanded via whole-genome, segmental, tandem, and individual-gene duplications, and the emerged redundant paralogs would be eliminated or retained owing to selective neutrality or adaptive benefit and further functional divergence. Here we show that tandem paralogs can contribute adaptive quantitative benefit and thus have been retained in a lineage-specific manner. In...
متن کاملSecondary Evolution of a Self-Incompatibility Locus in the Brassicaceae Genus Leavenworthia
Self-incompatibility (SI) is the flowering plant reproductive system in which self pollen tube growth is inhibited, thereby preventing self-fertilization. SI has evolved independently in several different flowering plant lineages. In all Brassicaceae species in which the molecular basis of SI has been investigated in detail, the product of the S-locus receptor kinase (SRK) gene functions as rec...
متن کاملThe evolution and diversification of S-locus haplotypes in the Brassicaceae family.
Self-incompatibility (SI) in the Brassicaceae plant family is controlled by the SRK and SCR genes situated at the S locus. A large number of S haplotypes have been identified, mainly in cultivated species of the Brassica and Raphanus genera, but recently also in wild Arabidopsis species. Here, we used DNA sequences from the SRK and SCR genes of the wild Brassica species Brassica cretica, togeth...
متن کاملThe ARC1 E3 ligase gene is frequently deleted in self-compatible Brassicaceae species and has a conserved role in Arabidopsis lyrata self-pollen rejection.
Self-pollen rejection is an important reproductive regulator in flowering plants, and several different intercellular signaling systems have evolved to elicit this response. In the Brassicaceae, the self-incompatibility system is mediated by the pollen S-locus Cys-Rich/S-locus Protein11 (SCR/SP11) ligand and the pistil S Receptor Kinase (SRK). While the SCR/SP11-SRK recognition system has been ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 101 9 شماره
صفحات -
تاریخ انتشار 2004